ON THE PRIMARINESS OF THE POULSEN SIMPLEX SPACE

BY WOLFGANG LUSKY

ABSTRACT

We show that the Poulsen simplex space is primary by investigating special monotone bases in L_1 -predual spaces.

1. Introduction

Assume all Banach spaces to be real. A Banach space X is called *primary* if for every bounded projection $P: X \to X$ we have that PX or (id-P)X is isomorphic to X. Let S be the Poulsen simplex, i.e. the metrizable compact Choquet simplex whose extreme point set ex S is dense in S. It is well known that S is uniquely determined (up to affine homeomorphisms) by this property ([4]). The corresponding L_1 -predual space $A(S) = \{f : S \to \mathbb{R} \mid f \text{ affine, continuous} \}$ is maximal in the sense that every separable L_1 -predual space X is isometrically isomorphic to a subspace Y of A(S) with contractive projection $P:A(S) \to Y$. We can even assume that (id-P)(A(S)) is isomorphic to A(S) ([7]). Furthermore, A(S) is isomorphic to the Gurarij space G which is uniquely defined by the following property: Whenever $E \subset F$ are finite dimensional Banach spaces and $T: E \to G$ is an isomorphism then there is an extension $\tilde{T}: F \to G$ of T to an isomorphism with $\|\tilde{T}\| \|\tilde{T}^{-1}\| \le (1+\varepsilon) \|T\| \|T^{-1}\|$ for every given $\varepsilon > 0$. In contrast to these spaces A(S) and G, $C(\Delta)$, Δ the Cantor set, has a minimality property: Every separable L_1 -predual space X, whose dual X^* is non-separable, contains an isometric copy Z of $C(\Delta)$ with contractive projection $P: X \to Z$ ([3]). It is well known that $C(\Delta)$ and moreover all C(K)-spaces with metrizable compact K are primary ([1], [5]).

In the present paper we show the primariness of A(S) and hence of G. Note that A(S) is not isomorphic to any complemented subspace of a C(K)-space ([2]).

Received October 16, 1979 and in revised form February 20, 1980

THEOREM I. Let $Q: A(S) \to A(S)$ be a bounded linear operator and let $\varepsilon > 0$. Then for $\tilde{Q} = \text{id-}Q$ or for $\tilde{Q} = Q$ there is a subspace $Y \subset A(S)$ and a contractive projection $R: A(S) \to Y$ such that

- (i) $Y \cong A(S)$,
- (ii) $1/(2+\varepsilon) \|y\| \le \|R\tilde{Q}y\| \le \|\tilde{Q}y\|$ for all $y \in Y$,
- (iii) there is a projection $R_1: A(S) \to \tilde{Q}Y$ with $||R_1|| \le (2+\varepsilon)||\tilde{Q}||$.

THEOREM II. Let $Q: A(S) \to A(S)$ be a bounded projection. Then, for $\tilde{Q} = Q$ or for $\tilde{Q} = \text{id-}Q$, $\tilde{Q}A(S)$ is isomorphic to A(S), i.e. A(S) is primary.

COROLLARY. There is a separable simplex space X, whose dual is non-separable, which is not primary. Hence X is neither isomorphic to $C(\Delta)$ nor to A(S).

PROOF. There is a simplex space Y whose dual is l_1 ([2]) which is not isomorphic to any complemented subspace of any C(K)-space. Define $X = (C(\Delta) \oplus Y)_{(\infty)}$. Clearly, Y is complemented in X, hence X is not isomorphic to $C(\Delta)$. On the other hand, X is not isomorphic to Y since $Y^* \cong l_1 \neq X^*$.

Before we prove Theorem I and Theorem II in section 3 and 4 we consider in the next section special Schauder bases in arbitrary separable L_1 -predual spaces and prove some technical lemmas.

2. Admissible Schauder bases in L_1 -predual spaces

A separable L_1 -predual X can be represented as follows: $X = \overline{\bigcup_{n \in \mathbb{N}} E_n}$, $l_{\infty}^n \cong E_n \subset E_{n+1}$ for all n. Let $\{e_{i,n} \mid i=1,\cdots,n\}$ be the canonical unit vector basis of $E_n \cong l_{\infty}^n$. Then the unit vector basis $\{e_{i,n+1} \mid i=1,\cdots,n+1\}$ can be taken in such a succession that

(*)
$$e_{i,n} = e_{i,n+1} + a_{i,n}e_{n+1,n+1}, \qquad i = 1, \dots, n,$$

where $a_{i,n}$ are some real numbers with $\sum_{i=1}^{n} |a_{i,n}| \le 1$. Let us define $e_n = e_{n,n}$ for all $n \in \mathbb{N}$. It is easy to see that $(e_n)_{n \in \mathbb{N}}$ is a monotone basis of X, i.e. the basis constant of $(e_n)_{n \in \mathbb{N}}$ is one. We call such bases $(e_n)_{n \in \mathbb{N}}$ admissible Schauder bases. Define linear functionals Φ_i on X as follows:

$$\Phi_{j}(e_{i,n}) = \begin{cases} 1 & i = j \\ & \text{for all } n \geq j. \end{cases}$$

 Φ_i is indeed well defined and we obtain that $\{\pm \Phi_i \mid j \in \mathbb{N}\}$ is w*-dense in the extreme point set of the dual unit ball of X, ex $B(X^*)$. We call these functionals associated with $(e_n)_{n \in \mathbb{N}}$ ([3], [7], [8], [10]).

LEMMA 1. Let $(e_n)_{n\in\mathbb{N}}$ be an admissible basis of an L_1 -predual whose associated functionals are $(\Phi_n)_{n\in\mathbb{N}}$. Let $N\subset\mathbb{N}$. Then $Y_N=\operatorname{closed}\operatorname{span}\{e_n\mid n\in N\}$ is an L_1 -predual and $(e_n)_{n\in\mathbb{N}}$ is an admissible basis of Y_N . Furthermore, $\Phi_{n\mid Y_N}$, $n\in\mathbb{N}$, are the functionals associated with $(e_n)_{n\in\mathbb{N}}$.

PROOF. Let $n_1 < n_2 < \cdots < n_m$ be the first elements of N. We show, $e_{n_1}, e_{n_2}, \cdots, e_{n_m}$ span l_{∞}^m and e_{n_m} is the last element of the unit vector basis of l_{∞}^m . This is clear if m=1. Assume that it is true for some m-1 and consider $e_{n_1}, e_{n_2}, \cdots, e_{n_{m-1}}, e_{n_m}$. Put $F_{m-1} = \text{span}\{e_{n_1}, e_{n_2}, \cdots, e_{n_{m-1}}\} \cong l_{\infty}^{m-1}$. Let $\{f_1, \cdots, f_{m-1}\}$ be the unit vector basis of F_{m-1} (with $f_{m-1} = e_{n_{m-1}}$) such that

$$\Phi_{n_i}(f_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad i, j = 1, \dots, m-1.$$

Consider $E_{n_m} = \operatorname{span}\{e_1, e_2, \dots, e_{n_m-1}, e_{n_m}\}$, whose unit vector basis is $\{e_{i,n_m} \mid i \leq n_m\}$ (i.e. $e_{n_m,n_m} = e_{n_m}$). Define $\Lambda = \{n_1, n_2, \dots, n_{m-1}\}$. Then we have

$$f_i = e_{n_i,n_m} + \sum_{\substack{j=1\\i \neq j}}^{n_m} \Phi_j(f_i)e_{j,n_m}, \qquad i = 1, \dots, m-1.$$

Let

$$h_i = e_{n_i,n_m} + \sum_{\substack{j=1 \ j \in \Lambda}}^{n_m-1} \Phi_j(f_i)e_{j,n_m}, \qquad i = 1, \dots, m-1 \text{ and } h_m = e_{n_m}.$$

Then the h_i , $i=1,\dots,m$, are the elements of the unit vector basis of span $(F_{m-1} \cup \{e_{n_m}\}) \cong l_x^m$ and we have

$$\Phi_{n_j}(h_i) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad i, j = 1, \dots, m.$$

COROLLARY 2. Let $(e_n)_{n\in\mathbb{N}}$ be an admissible basis of an L_1 -predual X whose associated functionals are $(\Phi_n)_{n\in\mathbb{N}}$. Let $N\subset\mathbb{N}$ be a subset and assume that there is $0<\lambda<1$ with w^* -closure $\{\Phi_n\mid n\in\mathbb{N}\}\subset\{\pm\Phi_n\mid n\in\mathbb{N}\}\cup\lambda B(X^*)$. Then $\exp B(Y_N^*)=\{\pm\Phi_{n\mid Y_N}\mid n\in\mathbb{N}\}$ and hence $Y_N^*\cong l_1$.

PROOF. $\{\pm \Phi_{n|Y_N} \mid n \in N\}$ must be w*-dense in ex $B(Y_N^*)$, so we have

ex
$$B(Y_N^*) \subset w^*$$
-closure $\{ \pm \Phi_{n|Y_N} \mid n \in N \} \cap \{ y^* \in Y_N \mid ||y^*|| = 1 \}$
 $\subset \{ \pm \Phi_{n|Y_N} \mid n \in N \}.$

Since Y_N is an L_1 -predual, $Y_N^* \cong l_1$.

3. Proof of Theorem I

Again, let S be the Poulsen simplex. Let $(e_n)_{n\in\mathbb{N}}$ be a given admissible basis of A(S). We can assume w.l.o.g. that the associated functionals $(\Phi_n)_{n\in\mathbb{N}}$ are positive in the natural order of $A(S)^* \cong L_1$, because, if $\Phi_i \not\equiv 0$ for some j, we may take $-\Phi_i$ and $-e_i$ instead of Φ_i and e_i . An easy way to construct admissible bases $(e_n)_{n\in\mathbb{N}}$ in A(S) is to consider a triangular matrix $A = (a_{i,n})$ whose columns are dense in $\{(\alpha_i) \in l_1 \mid 0 \leq \alpha_i, i = 1, 2, \cdots, \sum_{i=1}^{\infty} \alpha_i = 1\}$ with respect to the l_1 -norm. These columns define by (*) (section 2) isometric embeddings $E_n \cong l_{\infty}^n \to E_{n+1} \cong l_{\infty}^{n+1}$. The corresponding basis $(e_n)_{n\in\mathbb{N}}$, defined as in the preceding section, then satisfies $e_n \geq 0$, $n \in \mathbb{N}$. Furthermore, it is easy to show that in this case $e_1 = l_s$.

Let us now assume that $(e_n)_{n\in\mathbb{N}}$ is an arbitrary given admissible basis of A(S) such that $e_1=1_S$ and the corresponding associated functionals all are positive. This is equivalent to $\Phi_j(e_1)=1$ for all $j\in\mathbb{N}$.

We obtain closed span $\{e_n \mid n > 1\} = \{f \in A(S) \mid f(s_1) = 0\}$ for some fixed $s_1 \in ex S$. The positivity of the Φ_n ensures that $\hat{S} = w^*$ -closure $\{\Phi_n \mid n \in \mathbb{N}\}$ is, by evaluation, affinely homeomorphic to S. We have

$$\hat{S} = \{x^* \in A(S)^* \mid ||x^*|| = x^*(e_1) = 1\}.$$

Now, let $Q: A(S) \rightarrow A(S)$ be a bounded linear operator.

LEMMA 4. Let $\tau > 0$. Then there is a subsequence $N \subset \mathbb{N}$ such that for $\tilde{Q} = Q$ or for $\tilde{Q} = \mathrm{id} \cdot Q$ there exists $1/2 \le \kappa \le ||\tilde{Q}||$ with

- (i) $\Phi_n(\tilde{Q}e_n) \in [\kappa, \kappa + \tau]$ for all $n \in N$,
- (ii) $|\Phi_m(\tilde{Q}e_n)| \le 2^{-k}$ if $n, m \in \mathbb{N}$, n > m and n is the k-th element in \mathbb{N} ,
- (iii) w*-closure $\{\Phi_n \mid n \in N\}$ contains an interior point with respect to the restriction of the w*-topology on \hat{S} .

PROOF. At first, we define a subsequence $N_1 \subset \mathbb{N}$: Since $\Phi_n(e_n) = 1$ for all $n \in \mathbb{N}$ we have $\Phi_n(Qe_n) \ge 1/2$ or $\Phi_n((\mathrm{id} - Q)e_n) \ge 1/2$. Let $\omega = \max(\|Q\|, \|\mathrm{id} - Q\|)$ and let I_j , $j = 1, \dots, n$, for some $n \in \mathbb{N}$, be intervals, each of whose length is smaller than τ , such that $\bigcup_{j=1}^n I_j = [1/2, \omega]$. Let $W_j = \mathrm{w}^*$ -closure $\{\Phi_n \mid \Phi_n(Qe_n) \in I_j\}$ and $W_{n+j} = \mathrm{w}^*$ -closure $\{\Phi_n \mid \Phi_n((\mathrm{id} - Q)e_n) \in I_j\}$. Hence $\hat{S} = \bigcup_{j=1}^{2n} W_j$, since $\{\Phi_n \mid n \in \mathbb{N}\}$ is w^* -dense in \hat{S} . From Baire's theorem it follows that there is $j_0 \in \{1, 2, \dots, 2n\}$ such that interior $W_{j_0} \ne \emptyset$. Assume w.l.o.g. that $j_0 \le n$, i.e. put $\tilde{Q} = Q$. Define $N_1 = \{n \in \mathbb{N} \mid \Phi_n \in W_{j_0}\}$. N_1 satisfies (i) and (iii). Next, we choose a subsequence $N \subset N_1$ as follows: Let $U \subset W_{j_0}$ be w^* -open and connected, and let $\Psi_n \in U$, $n \in \mathbb{N}$, be w^* -dense in U such that $\|\Psi_{n|F}\| < 1$ for all $n \in \mathbb{N}$ with $F = \mathrm{span}\{e_n \mid n > 1\}$. Start with $1 < n_1 \in N_1$ arbitrarily. Assume that we have

defined already $n_1 < n_2 < \cdots < n_k \in N_1$. There is a subsequence $M \subset N_1$, containing n_1, n_2, \cdots, n_k but $1 \not\in M$ such that $\Phi_m \to \Psi_k$ if $m \in M$ and $m \to \infty$ with respect to the w*-topology. Hence $Y_M^* \cong l_1$ with $Y_M = \text{closed span}\{e_m \mid m \in M\}$ (Lemma 1 and Corollary 2). There are $\mu_{i,j} \in \mathbb{R}$ such that $\Phi_{n_i} \circ Q_{|Y_M} = \sum_{j \in M} \mu_{i,j} \Phi_{j|Y_M}$, $i = 1, \cdots, k$, and $\sum_{j \in M} |\mu_{i,j}| < \infty$ for all i. Let $n_{k+1} \in M$ be such that $n_{k+1} > n_k$,

$$|\Phi_{n_i}(Qe_{n_{k+1}})| = \left|\sum_{j \in M} \mu_{i,j} \Phi_j(e_{n_{k+1}})\right| \leq \sum_{\substack{j \in M \\ j \geq n_{k+1}}} |\mu_{i,j}| \leq 2^{-k-1}$$

for all $i = 1, \dots, k$ and

$$(+) \|(\Phi_{n_{k+1}} - \Psi_k)_{|E_k}\| \le k^{-1}, \text{where } E_k = \text{span}\{e_1, \dots, e_k\}.$$

(+) ensures that $U \subset w^*$ -closure $\{\Phi_{n_k} \mid k \in \mathbb{N}\}$.

Put
$$N = \{n_1, n_2, \cdots\}.$$

For the rest of this section, let us assume $\tilde{Q} = Q$.

Let $N = \{n_1, n_2, \dots\}$ be the sequence of Lemma 4. Fix $k \in \mathbb{N}$ and consider $x = \sum_{j>k} t_j e_{n_j}$. Then we have, for i < k, $|\Phi_{n_i}(Qx)| \le 2^{-k} \max_{j>k} |t_j| \le 2^{-k+1} ||x||$ since $\sup_n |t_n| \le 2 ||\sum_{n=1}^{\infty} t_n e_n||((e_n))$ is a monotone basis).

Consider the weight operator W defined by

$$W\left(\sum_{n\in\mathbb{N}}t_ne_n\right)=\sum_{n\in\mathbb{N}}t_n\Phi_n(Qe_n)e_n, \qquad t_n\in\mathbb{R}.$$

In the next lemma we show that W is well defined and bounded on a suitable subspace of A(S).

Let us always retain the above specialized admissible basis $(e_n)_{n\in\mathbb{N}}$ of A(S). Again define $E_n = \operatorname{span}\{e_1, e_2, \dots, e_n\}$ for all $n \in \mathbb{N}$. Consider $M \subseteq \mathbb{N}$. Then we call Y_M a facial subspace of A(S) (with respect to $(e_n)_{n\in\mathbb{N}}$) if $K = w^*$ -closed $\operatorname{conv}\{\Phi_m \mid m \in M\}$ is a face of \hat{S} which is affinely homeomorphic to S, the restriction map $K \to K \mid_{Y_M}$ is a homeomorphism and we have $\|y\| = \sup_{k \in K} |k(y)|$ for all $y \in Y_M$. It is clear that in this case $Y_M \cong A(S)$ and $R: A(S) \to Y_M$ with k(Rf) = k(f), for all $k \in K$, $f \in A(S)$, is a contractive projection.

LEMMA 5. Let $N \subset N$ be a subsequence such that the interior of w*-closure $\{\Phi_n \mid n \in N\}$ is non empty (in \hat{S}). Then there is a subsequence $M \subset N$ such that Y_M is a facial subspace. Moreover, if N is the sequence of Lemma 4, then for every $\varepsilon > 0$ we can arrange M such that in addition

$$|\Phi_m(Wy) - \Phi_m(Qy)| \le \varepsilon \|y\|$$

for all $y \in Y_M$ and all $m \in M$.

PROOF. It suffices to assume that N is as in Lemma 4. Since the interior of w*-closure $\{\Phi_n \mid n \in N\}$ is non-empty we may assume that Φ_m , for some $n \in N$, is an interior point. Moreover, we can suppose that there is $1 > \delta > 0$ such that $x^* \in w^*$ -closure $\{\Phi_k \mid k \in N\}$ whenever $x^* \in \hat{S}$ and $\|(x^* - \Phi_n)_{\mid E_n}\| < \delta$. Choose $M = \{m_1, m_2, \dots\}$ by induction: Put $m_1 = n$. Assume that we have defined already $m_1 < m_2 < \dots < m_k$ such that $\|(\Phi_{m_1} - \Phi_n)_{\mid E_n}\| < \delta$, $i = 1, \dots, k$ and

$$|\Phi_{m_i}(Wy) - \Phi_{m_i}(Qy)| \leq (1 - 2^{-k})\varepsilon ||y||,$$

for all $i = 1, \dots, k$ and $y \in \operatorname{span}\{e_{m_1}, e_{m_2}, \dots, e_{m_k}\}$.

(0) Let $H = \text{conv}\{\Phi_{m_i}^{\ \ | \ } | i = 1, \dots, k\}$ and choose $x_1^*, \dots, x_r^* \in H$ such that, whenever $x^* \in H$, then there is $i \in \{1, \dots, r\}$ with

$$||x^* - x^*|| \le 2^{-k-1}.$$

At first we consider x_i^* . In view of our assumption on the Φ_{m_i} we clearly have

$$|x_1^*(Wy) - x_1^*(Qy)| \le (1 - 2^{-k})\varepsilon ||y||,$$

for all $y \in \text{span}\{e_{m_1}, e_{m_2}, \dots, e_{m_k}\}$, and $\|(x_1^* - \Phi_n)_{|E_n}\| < \delta$. There is $m_{k+1} \in N$, $m_{k+1} > m_k$, such that

(3)₁
$$\| (\Phi_{m_{k+1}} - x_1^*)_{|E_{m_k} + QE_{m_k}} \| \le \delta_1 < 2^{-k-1}$$

for some $0 < \delta_1$. If δ_1 is sufficiently small we have

$$\|(\Phi_{m_{k+1}}-\Phi_n)_{|E_n}\|<\delta.$$

Let $y_0 \in \text{span}\{e_{m_1}, e_{m_2}, \dots, e_{m_k}\}$ and put $y = y_0 + te_{m_{k+1}}$, $t \in \mathbb{R}$. Then with (2) and (3) we have, if δ_1 was suitably small,

$$\begin{aligned} |\Phi_{m_{k+1}}(Wy) - \Phi_{m_{k+1}}(Qy)| &= |\Phi_{m_{k+1}}(Wy_0) - \Phi_{m_{k+1}}(Qy_0)| \\ &\leq (1 - 2^{-k-1})\varepsilon \|y_0\| \\ &\leq (1 - 2^{-k-1})\varepsilon \|y\|. \end{aligned}$$

From one of the properties of the elements in N it follows that $\Phi_{m_i}(Qe_{m_{k+1}})$ is small for all $i=1,\dots,k$, if m_{k+1} is large (Lemma 4(ii)). Hence if m_{k+1} is appropriately chosen we obtain:

$$\begin{aligned} |\Phi_{m_i}(Wy) - \Phi_{m_i}(Qy)| &\leq |\Phi_{m_i}(Wy_0) - \Phi_{m_i}(Qy_0)| + |t\Phi_{m_i}(Qe_{m_{k+1}})| \\ &\leq (1 - 2^{-k-1})\varepsilon \|y\| \end{aligned}$$

for all $y \in \text{span}\{e_{m_1}, e_{m_2}, \dots, e_{m_{k+1}}\}$ and $i = 1, \dots, k$.

In the analogous manner treat x_2^* , i.e. choose $N \ni m_{k+2} > m_{k+1}$ large enough such that

(3)₂
$$\| (\Phi_{m_{k+2}} - x_2^*)_{|E_{m_{k+1}} + QE_{m_{k+1}}|} \| \le \delta_2 < 2^{-k-1}$$

for suitably small $\delta_2 > 0$. This yields

$$\|(\Phi_{m_{k+2}} - \Phi_n)_{|E_n}\| < \delta \quad \text{and}$$

$$|\Phi_{m_i}(Wy) - \Phi_{m_i}(Qy)| \le (1 - 2^{-k-2})\varepsilon \|y\|$$
for all $y \in \text{span}\{e_{m_i}, e_{m_i}, \dots, e_{m_{k+1}}\}$ and $i = 1, \dots, k+2$.

Continue with x_3^*, \dots, x_r^* . We obtain $\Phi_{m_{k+1}}, \dots, \Phi_{m_{k+r}}$ such that for every $x^* \in H$ there is $i \in \{1, \dots, r\}$ with

$$\|(\Phi_{m_{k+1}} - x^*)_{|E_{m_k}}\| \le 2^{-k}$$

and for every $j = 1, 2, \dots, k + r$ there is $x^* \in H$ with

(5)
$$\|(\Phi_{m_i} - x^*)_{|E_{m_i}}\| \leq 2^{-k}.$$

Furthermore.

$$|\Phi_{m_i}(Wy) - \Phi_{m_i}(QY)| \leq (1 - 2^{-k-r})\varepsilon ||y||$$

for all $y \in \text{span}\{e_{m_1}, e_{m_2}, \dots, e_{m_{k+r}}\}\ \text{and}\ i = 1, \dots, k+r$.

Then go back to (0) and do the next step in our induction.

Define $M = \{m_1, m_2, \cdots\}$. Let $K = w^*$ -closure conv $(\{\Phi_i \mid j \in M\})$. Our construction and (4) ensure that, whenever $m \in \mathbb{N}$ and $x^* \in K$, then there is some $j \in M$ with $\|(\Phi_j - x^*)_{|E_m}\| \le 2^{-m}$, hence ex K is w^* -dense in K. Furthermore, by (5), for each $x^* \in K$ and $m_k \in M$ there is $y^* \in \text{conv}(\{\Phi_{m_1}, \cdots, \Phi_{m_k}\})$ with $\|(x^* - y^*)_{|E_{m_k}}\| \le 2^{-k-1}$. This means, K is a face: Indeed, let $x^* \in K$ and assume $x^* = 1/2 \ u^* + 1/2 \ v^*, \|u^*\|, \|v^*\| \le 1$. Let $y^*_k \in \text{conv}\{\Phi_{m_1}, \cdots, \Phi_{m_k}\}$, $k \in \mathbb{N}$, such that $y^*_k \to^{w^*} x^*$. Since $\text{conv}(\{\Phi_{m_1|E_{m_k}}, \cdots \Phi_{m_k|E_{m_k}}\})$ is a face of $B(E^*_{m_k}) = B(l_1)$, there are u^*_k , $v^*_k \in \text{conv}(\{\Phi_{m_1}, \cdots, \Phi_{m_k}\})$ such that $u^*_k \xrightarrow{w^*} u^*$, $v^*_k \xrightarrow{w^*} v^*$.

Hence $u^*, v^* \in K$.

Put $D_k = \text{span}\{e_{m_1}, e_{m_2}, \dots, e_{m_k}\}$. If $x^*, y^* \in K$, $x^* \neq y^*$, then there is $m \in \mathbb{N}$ and $x \in E_m$, $||x|| \le 1$, such that $x^*(x) \neq y^*(x)$. Let k be so large that $m \le m_k$ and $2^{-k+3} < |x^*(x) - y^*(x)|$. Let $\{f_1, \dots, f_k\}$ be the unit vector basis of $D_k \cong l_\infty^k$ and define $x_k = \sum_{i=1}^k \Phi_{m_i}(x) f_i$. Since there are $x_0^*, y_0^* \in \text{conv}(\{\Phi_{m_1}, \Phi_{m_2}, \dots, \Phi_{m_k}\})$ with $||(x_0^* - x^*)_{|E_{m_k}}||, ||(y_0^* - y^*)_{|E_{m_k}}|| \le 2^{-k+1}$ we obtain

$$|x^*(x) - x^*(x_k)| \le |x^*(x) - x^*(x_k)| + 2^{-k+2} = 2^{-k+2}$$

and

$$|y^*(x) - y^*(x_k)| \le |y^*(x) - y^*(x_k)| + 2^{-k+2} = 2^{-k+2}$$

Hence $|x^*(x_k) - y^*(x_k)| \ge |x^*(x) - y^*(x)| - 2^{-k+3} > 0$, i.e. $x^*_{Y_M} \ne y^*_{Y_M}$. This proves Lemma 5.

Let $\delta > 0$, $n_0 \in \mathbb{N}$ and assume that $E \subset A(S)$ is a finite dimensional subspace. Let $N = \{n \in \mathbb{N} \mid ||(\Phi_n - \Phi_{n_0})_{|E}|| < \delta\}$. Then in view of the density of ex \hat{S} in \hat{S} we have that w*-closure $\{\Phi_n \mid n \in N\}$ contains an interior point. Therefore Lemma 5 is applicable to such a sequence N.

Let N be again as in Lemma 4 and let $M \subset N$ be the corresponding subsequence of Lemma 5. W maps Y_M on a dense subspace of Y_M . If W is an isomorphism then it is surjective and in this case Theorem 1 follows immediately from Lemma 5 (with $Y = Y_M$). Unfortunately, W need not be an isomorphism. So the difficulty of the following proof is to construct a new admissible basis. Then we have to use the arguments of the proof of Lemma 5 again.

Now, we prove Theorem I. Let $0 < \delta < 1$ be arbitrary. Consider the subsequence N of Lemma 4 with some $\tau > 0$ depending on δ (to be determined later).

Applying Lemma 5 we may restrict our considerations to a suitable facial subspace Y_M of Y_N , with all the properties mentioned in Lemma 5. Here we choose $0 < \varepsilon < 1/2(2+\delta)$. For simplicity we may assume w.l.o.g. that M = N (i.e. $Y_M \cong A(S)$). We have then $\Phi_n(Qe_n) \in [\kappa, \kappa + \tau]$ for all $n \in \mathbb{N}$, where $\kappa \ge \frac{1}{2}$ is the constant of Lemma 4. Furthermore we have

$$|\Phi_n(Wy) - \Phi_n(Qy)| \le \varepsilon ||y||$$
 for all $n \in \mathbb{N}, y \in A(S)$

and

$$|\Phi_m(Qx)| \le 2^{-n+1} ||x||$$
 for all $x \in \text{span}\{e_{n+1}, e_{n+2}, \cdots\}$ and $m < n$.

We consider two alternatives: At first, assume that there is facial subspace Y whose facial projection is R, such that

$$||RQy|| \ge (2+\delta)^{-1}$$
 whenever $y \in Y$ and $||y|| = 1$.

Here, from our assumptions, we infer $\|(W - RQ)_{|Y}\| \le \varepsilon$. $T = RQ_{|Y}$ is invertible and therefore W is invertible. Hence both operators are surjective. We have $\|T^{-1}\| \le 2 + \delta$. Define $R_1: A(S) \to QY$ by $QT^{-1}R$. If δ is sufficiently small, we are done.

Assume now, that for every facial subspace Y there is $y \in Y$ with ||y|| = 1 and $||RQy|| < (2+\delta)^{-1}$. We construct then a subspace $Y \cong A(S)$ and a contractive projection $R: A(S) \to Y$ such that $||\kappa \operatorname{id}_Y - RQ_{|Y}|| \le \delta$. Then we obtain

 $1/2 \|y\| \le \kappa \|y\| \le \|RQy\| + \delta \|y\|$ for all $y \in Y$. Hence again, $T = RQ_{|Y}$ is invertible if δ is small enough and we can apply the same argument as before. We define Y in a manner which is similar to that used in the proof of Lemma 5: Let $\alpha_{i,k}$, $i = 0, 1, 2, \dots, k$, $k \in \mathbb{N}$, be non-negative real numbers such that $\sum_{i=0}^k \alpha_{i,k} = 1$ for all $k \in \mathbb{N}$, the l_1 -closure of $\{(\alpha_{1,k}, \alpha_{2,k}, \dots, \alpha_{k,k}, 0, 0, \dots) \mid k \in \mathbb{N}\}$ contains $\{(\alpha_i) \in l_1 \mid \alpha_i \ge 0, i = 1, 2, \dots, \sum_{i=1}^k \alpha_i = 1\}$ and

(0)
$$2^{-k-1} \le \alpha_{0,k} \le 2^{-k}$$
 for all $k \in \mathbb{N}$.

Put $F_0 = \{0\}$. Assume that we have defined already $F_k = \text{span}\{f_1, \dots, f_k\} \cong l_{\infty}^k$ where $\{f_1, \dots, f_k\}$ is an admissible basis of l_{∞}^k with

(1)
$$\{f_1, \dots, f_k\} \subset \operatorname{span}\{e_2, e_3, \dots, e_n\}$$
 for some $n \in \mathbb{N}$.

Assume furthermore that we have defined already $m_1 < m_2 < \cdots < m_k$ such that $\Phi_{m_1}, \Phi_{m_2}, \cdots, \Phi_{m_k}$ are associated with f_1, f_2, \cdots, f_k . Moreover suppose that $R_k : E_n \to F_k$ is a contractive projection such that $\Phi_{m_j}(x) = \Phi_{m_j}(R_k x)$ for all $j = 1, \dots, k$ and $x \in E_n$. Finally assume

(2)
$$|\kappa \Phi_{m_i}(f) - \Phi_{m_i}(Qf)| \leq \left(\sum_{j=1}^k 2^{-j}\right) \delta ||f||$$
 for all $f \in F_k$, $i = 1, \dots, k$.

Let $0 < \rho < \min(2^{-k-4} ||Q||^{-1} \delta, 2^{-k-4} \delta, \tau)$. Let $p \in \mathbb{N}$ be such that p > n,

(3)
$$|\Phi_{m_i}(Qx)| \le \rho ||x||$$
 for all $i = 1, \dots, k$ and $x \in \text{span}\{e_q \mid q \ge p\}$ and

$$\left\|\left(\Phi_{\rho}-\left(\alpha_{0,k}\Phi_{1}+\sum_{i=1}^{k}\alpha_{i,k}\Phi_{m_{i}}\right)\right)_{|F|+OF}\right\|\leq\rho.$$

By Lemma 5 there is a subsequence $N \subset \{q \in \mathbb{N} \mid q \ge p\}$ such that Y_N is a facial subspace and

(5)
$$\|(\Phi_q - \Phi_p)_{|E_p + QE_p}\| \le \rho^2 \quad \text{for all } q \in N.$$

By our assumption, there is $y \in Y_N$ such that ||y|| = 1 but $||RQy|| < (2 + \delta)^{-1}$. We can assume without loss of generality that $y \in \text{span}\{e_q \mid q \in N\}$, i.e. there is $q \in N$ with $|\Phi_q(y)| = 1$ and $|\Phi_q(Qy)| < (2 + \delta)^{-1}$. Suppose $\Phi_q(y) = 1$ (otherwise take -y). Say $y \in G = \text{span}(E_p \cup \{e_j \mid j \in N, j \le r\})$ for some r > q. In view of Lemma 1, G is an l_∞^m -space where $m = \dim G$. Put $f = \lambda e_p + (1 - \lambda)y$ where $0 \le \lambda \le 1$ is so that

(6)
$$\kappa \ge \Phi_q(Qf) \ge \kappa - \rho.$$

By (5) we obtain $\kappa + 2\tau \ge \kappa + \tau + \rho \ge \Phi_p(Qe_p) + \rho^2 \|Q\| \ge \Phi_q(Qe_p) \ge \Phi_p(Qe_p) - \rho^2 \|Q\| \ge \kappa - \rho \ge \kappa - \tau \ge 1/2 - \tau$. If τ is sufficiently small (such that, for instance, $(1/2 - \tau) - (2 + \delta)^{-1} > 12\tau$), we have $\lambda \ge 3/4 \ge (2(1 - \rho^2))^{-1}$. Hence $\Phi_j(f) \ge 0$ for all $j \le r$, $j \in \mathbb{N}$ ((5)). Moreover, $\Phi_i(f) = 0$, $i = 1, \dots, p - 1$, $1 \ge \Phi_p(f) \ge 0$, $1 \ge \Phi_q(f) \ge 1 - \rho^2$ and $|\Phi_{m_i}(Qf)| \le \rho$ for all $i = 1, \dots, k$ (in view of (3)).

Define $m_{k+1} = q$ and $f_{k+1} \in G$ by $\Phi_q(f_{k+1}) = 1$ and $\Phi_j(f_{k+1}) = (1 - \rho)\Phi_j(f)$, if $j = 1, \dots, p$, or $j \in N$, $j \le r \neq q$. Let $f_{i,k}$, $i = 1, \dots, k$, be the elements of the unit vector basis of F_k . Then we have for $j \in N$, $j \le r$, $j \ne q$ and for j = p:

$$\begin{split} &\sum_{i=1}^{k} |\Phi_{j}(f_{i,k}) - \Phi_{q}(f_{i,k})\Phi_{j}(f_{k+1})| + |\Phi_{j}(f_{k+1})| \\ &\leq \sum_{i=1}^{k} |\Phi_{j}(f_{i,k}) - \Phi_{q}(f_{i,k})| + (1 - \Phi_{j}(f_{k+1})) \sum_{i=1}^{k} |\Phi_{q}(f_{i,k})| + |\Phi_{j}(f_{k+1})| \\ &\leq 2\rho^{2} + \sum_{i=1}^{k} |\Phi_{q}(f_{i,k})| + \left(1 - \sum_{i=1}^{k} |\Phi_{q}(f_{i,k})|\right) (1 - \rho) \\ &= 2\rho^{2} + 1 - \rho \left(1 - \sum_{i=1}^{k} |\Phi_{q}(f_{i,k})|\right) \leq 2\rho^{2} + 1 - \rho (2^{-k-1} - \rho - \rho^{2}) \leq 1 \end{split}$$

in view of (0), (4), (5) and the choice of ρ . (Recall that $\Phi_j(f_{k+1}) \ge 0$ for all $j=1,\cdots,p$ and for $j\in N, j\le r$. Furthermore, in view of (1) we have $\Phi_1(f_{i,k})=0$ for all $i=1,\cdots,k$. Hence, by (4), (5) and (0), $1-\sum_{i=1}^k |\Phi_q(f_{i,k})| \ge 2^{-k-1} - \rho - \rho^2$.) Thus $f_{i,k} - \Phi_q(f_{i,k})f_{k+1}$, $i=1,\cdots,k$, and f_{k+1} are the elements of the unit vector basis of $F_{k+1} = \text{span}\{f_1, f_2, \cdots, f_{k+1}\} \cong l_\infty^{k+1}$, since $F_{k+1} \subset G$, i.e.

$$||x|| = \sup\{|\Phi_j(x)| | j = 1, \dots, p, \text{ or } j \in \mathbb{N}, j \le r\}$$
 for all $x \in F_{k+1}$.

By (6) we obtain

(7)
$$|\Phi_q(Qf_{k+1}) - \kappa| \le (1 + ||Q||)\rho \le 2^{-k-3}\delta$$
 since $||f - f_{k+1}|| \le \rho$.

The latter inequality also yields ((3)):

(8)
$$|\Phi_{m_i}(Qf_{k+1})| \le (1 + ||Q||)\rho \le 2^{-k-3}\delta$$
 for all $i = 1, \dots, k$.

Hence we have $(q = m_{k+1})$

(9)
$$|\kappa \Phi_{m_i}(y) - \Phi_{m_i}(Qy)| \le \left(\sum_{i=1}^{k+1} 2^{-i}\right) \delta ||y||, \quad i = 1, \dots, k+1,$$

if $y = \sum_{j=1}^{k+1} t_j f_j$. This follows for $i = 1, \dots, k$ from (2), (8), and for i = k+1 from (2), (4), (5) and (7). (Note that $\|\sum_{j=1}^{k} t_j f_j\| \le \|y\|$ since $\{f_1, \dots, f_{k+1}\}$ is a monotone

basis.) Let $x \in E_r$ and define $R_{k+1}x = \sum_{i=1}^k \Phi_{m_i}(x)(f_{i,k} - \Phi_q(f_{i,q})f_{k+1}) + \Phi_{m_{k+1}}(x)f_{k+1}$. We obtain $\Phi_{m_i}(x) = \Phi_{m_i}(R_{k+1}x)$ for all $i = 1, \dots, k+1$. Furthermore, if $y \in E_n$, then we have

$$||R_{k}x - R_{k+1}x|| = \left\| \sum_{i=1}^{k} \Phi_{m_{i}}(x) f_{i,k} - \sum_{i=1}^{k} \Phi_{m_{i}}(x) (f_{i,k} - \Phi_{q}(f_{i,k}) f_{k+1}) - \Phi_{m_{k+1}}(x) f_{k+1} \right\|$$

$$(10) \qquad \leq 2^{-k+1} ||x||$$

since, with $q = m_{k+1}$,

$$\begin{split} \left\| \left(\Phi_{q} - \sum_{i=1}^{k} \Phi_{q}(f_{i,k}) \Phi_{m_{i}} \right)_{|E_{n}|} \right\| \\ & \leq \left\| \Phi_{q} - \left(\alpha_{0,k} \Phi_{1} + \sum_{i=1}^{k} \alpha_{i,k} \Phi_{m_{i}} \right) \right\| + \alpha_{0,k} + \left\| \sum_{i=1}^{k} \left(\alpha_{i,k} - \Phi_{q}(f_{i,k}) \right) \Phi_{m_{i}} \right\| \\ & \leq \rho^{2} + \rho + \sum_{i=1}^{k} \left| \Phi_{q}(f_{i,k}) - \alpha_{i,k} \right| + \alpha_{0,k} \leq 2\rho^{2} + 2\rho + 2^{-k} \leq 2^{-k+1} \end{split}$$

(cf. (4), (5) and (0)). Define $Y = \operatorname{closed} \operatorname{span} \{f_1, f_2, \dots\}$. $R: A(S) \to Y$ with $Rx = \lim_{k \to \infty} R_k x$ for all $x \in \bigcup_{n \in \mathbb{N}} E_n$ is a contractive projection with $\Phi_{m_i}(Rx) = \Phi_{m_i}(x)$ for all i (cf. (10)). Then (9) yields $\|\kappa \operatorname{id}_Y - RQ_{|Y}\| \le \delta$. The choice of the $\alpha_{i,k}$ asserts that $\sum_{i=1}^k \alpha_{i,k} \to 1$ if $k \to \infty$. Moreover, we have, by construction,

$$\|\Phi_{m_{k+1}|F_k}\| \ge 1 - 2^{-k} - \rho - \rho^2 \ge 1 - 2^{-k+1}$$
 for all k .

Hence, $\|\Phi_{m_h|F_k}\| \ge \prod_{j=k-1}^{\infty} (1-2^{-j})$ for all $h \ge k$. This means that w*-closure $\{\Phi_{m_i|Y} \mid i \in \mathbb{N}\} \subset \{y^* \in Y^* \mid \|y^*\| = 1\}$ and Y is a simplex space where the corresponding simplex is the Poulsen simplex.

It should be pointed out that Theorem I remains true if we replace A(S) by $C(\Delta)$, Δ the Cantor set. Here we can consider the following admissible basis: Let $A = (a_{i,n})$ be a matrix whose columns are the elements of the usual unit vector basis of l_1 and assume that each of these elements appears infinitely many times among the columns of A. The corresponding numbers $a_{i,n}$ define, according to (*), section 2, isometric embeddings $l_n^m \cong E_n \to E_{n+1} \cong l_n^{n+1}$. We have $O(1) = C(\Delta)$ ([7]). Take the corresponding admissible basis $(e_n)_{n \in \mathbb{N}}$. The associated functionals $(\Phi_n)_{n \in \mathbb{N}}$ here satisfy: For every $k, m \in \mathbb{N}$ there is $n \geq m$ such that O(1) = 0 with only minor modifications. In particular, in the preceding proof we may take O(1) = 0 which simplifies the arguments considerably.

4. Proof of Theorem II

The proof of Theorem II is an easy consequence of Pelczynski's decomposition method. Let X_n , $n \in \mathbb{N}$, be Banach spaces. Then we define

$$\left(\bigoplus_{n=1}^{\infty} X_n\right)_{(c_0)} = \left\{ (x_n)_{n \in \mathbb{N}} \middle| x_n \in X_n, \lim_{n \to \infty} ||x_n|| = 0 \right\}$$

and consider the norm $||(x_n)_{n\in\mathbb{N}}|| = \sup_{n\in\mathbb{N}} ||x_n||$.

LEMMA 6. A(S), S the Poulsen simplex, is isomorphic to $(\bigoplus_{n=1}^{\infty} A(S))_{(c_0)}$.

PROOF. Put $Z = \bigoplus_{n=1}^{\infty} A(S)_{(c_0)}$. It is easy to show that Z is an L_1 -predual space. Hence Z can be regarded as a subspace of A(S) such that there is a contractive projection $P: A(S) \to Z$ and (id-P)(A(S)) is isomorphic to A(S). Hence we have

$$A(S) = (\mathrm{id} - P)(A(S)) \oplus Z \sim A(S) \oplus \left(\bigoplus_{n=1}^{\infty} A(S)\right)_{(c_0)} \sim \left(\bigoplus_{n=1}^{\infty} A(S)\right)_{(c_0)}. \quad \blacksquare$$

PROOF OF THEOREM II. Let $\tilde{Q} = Q$. By Theorem I there is a complemented subspace $W \subset QA(S)$ such that $W \sim A(S)$, hence we can write $QA(S) = W \oplus Z$. Furthermore, $A(S) = U \oplus QA(S)$. We have $A(S) \oplus QA(S) = A(S) \oplus W \oplus Z \sim W \oplus Z = QA(S)$ since $A(S) \oplus W \sim W$. Furthermore

$$A(S) \bigoplus QA(S) \sim \left(\bigoplus_{n=1}^{\infty} A(S)\right)_{(c_0)} \bigoplus QA(S)$$

$$= \left(\bigoplus_{n=1}^{\infty} U\right)_{(c_0)} \bigoplus \left(\bigoplus_{n=1}^{\infty} QA(S)\right)_{(c_0)} \bigoplus QA(S)$$

$$\sim \left(\bigoplus_{n=1}^{\infty} U\right)_{(c_0)} \bigoplus \left(\bigoplus_{n=1}^{\infty} QA(S)\right)_{(c_0)} \sim A(S).$$

This proves Theorem II.

REFERENCES

- 1. D. Alspach and Y. Benyamini, Primariness of spaces of continuous functions on ordinals, Israel J. Math. 27 (1977), 64-92.
- 2. Y. Benyamini and J. Lindenstrauss, A predual of l_1 which is not isomorphic to a C(K)-space, Israel J. Math. 13 (1972), 246-259.
- 3. A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_1 -spaces and their representing matrices, Acta Math. 126 (1971), 165-193.
- 4. J. Lindenstrauss, G. Olsen and Y. Sternfeld, *The Poulsen simplex*, Ann. Inst. Fourier (Grenoble) 28 (1978), 91-114.

- 5. J. Lindenstrauss and A. Pelczynski, Contributions to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971) 225-249.
 - 6. W. Lusky, The Gurarij spaces are unique, Arch. Math. 27 (1976), 627-635.
 - 7. W. Lusky, On separable Lindenstrauss spaces, J. Functional Analysis 26 (1977), 103-120.
- 8. E. Michael and A. Pelczynski, Separable Banach spaces which admit l_n^* approximation, Israel J. Math. 4 (1966), 189–198.
 - 9. P. Wojtaszczyk, Some remarks on the Gurarij space, Studia Math. 41 (1972), 207-210.
- 10. M. Zippin, On some subspaces of Banach spaces whose duals are L_1 -spaces, Proc. Amer. Math. Soc. 23 (1969), 378-385.

Gesamthochschule Paderborn Fachbereich 17, Warburger Straße 100 4790 Paderborn, West Germany